Compositional Message Sequence Charts

Elsa L. Gunter Anca Muscholl
Bell Laboratories Universite Paris 7
600 Mountain Ave. 2, place Jussieu
Murray Hill, NJ 07974 75251 Paris Cedex 05

Doron Peled
Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974

October 17, 2000

Abstract

Message sequence charts (MSCs) is a standard notation for describing the
interaction between communicating objects. It is popular among the designers
of communication protocols. MSCs enjoy both a visual and a textual representa-
tion. High level MSCs (HMSCs) allow specifying infinite scenarios and different
choices. In this paper we demonstrate a weakness of HMSCs, which disallows
one to model certain interactions. Specifically, an HMSC consists of a graph,
where each node is a finite MSC with matched send and receive events, and vice
versa. We will show, by means of an example, that some simple finite state and
simple communication protocol cannot be represented using HMSCs. We then
propose an extension to the MSC standard, which allows HMSC nodes to include
unmatched messages. The corresponding graph notation will be called HCMSC,
which stands for High level Compositional Message Sequence Charts. With the
extended framework, we provide an algorithm for automatically constructing an
MSC representation for finite state asynchronous message passing protocols.

1 Introduction

Visual notations are useful in the design of large and complicated systems. They allow
a more intuitive understanding of the behavior of the system and the relation between
its components. They often allow abstracting away parts of the system that are less
relevant for a particular view. Message sequence charts are among the most frequently
used formalism for designing communication protocols. Recently, they have been also
used in the development of object oriented systems [17]. In the recent years, we observe
the development of a growing number of tools and algorithms for the manipulation of
MSC based designs [2, 13, 3, 12, 1, 7].

The standard visual and textual notation [10] by TTU allows representing a single
execution scenario, as well as a collection of scenarios, including choices and repetition.
This is achieved by a notation called HMSC (High Level Message Sequence Chart),

which consists of a graph, where each node contains a single MSC. The system behavior
can follow the paths on that graph, starting from some initial node. In this paper we
show, by means of an example, a limitation of HMSCs. This limitation stems from
the constraint that each HMSC node must have only matched send and receive events.
We show examples where one cannot break a possibly infinite computation of a finite
state system into finitly many nodes with matched communication events. (A finite
execution can always be represented as a single node.) We demonstrate that such
undecomposable behaviors are not merely a theoretical result, but can represent the
execution of real protocols.

To circumvent the problem, we suggest an extension to the MSC standard. This
extension allows specifying MSCs with unmatched sends and receives. The semantics
of the new construct prescribes how to combine such MSC nodes together. We use
the extended notation to suggest an algorithm for the automatic generation of MSC
representations for finite state systems.

This defficiency of MSCs was also recognized in [11]. The solution suggested there
is a different extension to HMSCs. According to this extension, one can use parallel
components of MSCs, and allow intercommunication between them, using a mechanism
called ‘gates’. Our solution differs from that of [11], as we study the effect of allowing
communication between sequentially composed MSCs. That is, a communication that
starts in one MSC and ends in a subsequent one. The problem of checking whether a
finite-state protocol can be translated into an HMSC has been considered in [8, 14].
In the first paper it is shown that this question i1s decidable, whereas the second paper
considers the complexity issue in different settings.

2 Preliminaries

Each MSC describes a scenario where some processes communicate with each other.
Such a scenario includes a description of the messages sent, messages received, the
local events, and the ordering between them. In the visual description of MSCs, each
process 1s represented as a vertical line, while a message is represented by a horizontal
or slanted arrow from the sending process to the receiving one, as in Figure 1. The
corresponding I'TU Z120 textual representation of the MSC appears on the right side
part of Figure 1.

Definition 2.1 An MSC M is a tuple (V,<,P,N,L, T, N,m).
o V is a finite set of events,

e < C V xV isan acyclic relation,

P is a set of processes,

N is a set of message names,

e L:V = P is a mapping that associates each event with a process,

T:V — {s,r,1} is a mapping that describes each event as send, receive or local,
respectively.

o N :V — N maps every event to a name.

msc MSC;
inst P1: process Root,
P2: process Root,
P3: process Root;
‘ PI ‘ ‘ P2 ‘ ‘ Pd ‘ instance P1;
out M1 to P2;
Ml in M5 from P2;
in Mé from P3;
M2 endinstance;
instance P2;
M3 in M1 from P1;
out M2 to P3;
M4 out M3 to P3;
in M4 from P3;

M5 out M5 to Pi1;
endinstance;

M6 instance P3;

in M2 from P2;

in M3 from P2;

out M4 to P2;

out M6 to Pi1;

endinstance;
endmsc;

Figure 1: Visual and textual representation of an MSC

e m C VXV s a partial function called matching that pairs up send and receive events.

Fach send is paired up with exactly one receive and vice versa. Fvents vi and vs
can be paired up with each other, only if N(v1) = N(va).

A message consists of a pair of matching send and receive events. For two events e
and f, we have e < f if and only if one of the following holds:

e ¢ and f are a matching send and receive events, respectively.

e ¢ and [belong to the same process P, with e appearing before f on the process
line.

We assume fifo (first in first out) message passing, i.e.,

(T(el) = T(ez) =sA T(fl) = T(fz) =TA m(el,fl) A m(ez, fz)/\
L(@l) = L(@z) A L(fl) = L(fz) Nep < 62) — f1 < fz

Denote by e — f the fact that e < f and either e and f are a matching send and
receive events, or e and f belong to the same process and there is no event between
e and f on some process line. That 1s, e immediately precedes f. The transitive
closure of the relation < is a partial order called the wvisual ordering of events and it is
obtained from the syntactical representation of the chart (e.g. represented according
to the standard syntax ITU-Z120 [10]).

A type is a triple (¢, j, m), including two processes P; and P;, and a message name
m. FEach send or receive event has a type, according to the origin and destination of
the message, and the label on the message. Matching events have the same type. A
linearization of an MSC M = (V,<,P,N,L,T, N, m) is a total order on V, which
extends the relation (V) <).

Tools such as Msc [2] support representing message sequence charts. They allow
both a visual description of the MSCs, and a textual representation [10]. Thus, an
MSC can be obtained either by drawing it using a visual interface, or by typing in its

Pl P2, P3

A1
M D
3
J%

M6

D

o
Of

Figure 2: The partial order between the events of the MSC in Figure 1

textual description. The two representations are easily translatable from one another.
This approach has the advantage that the visual representation of an MSC is related
to some formal representation that can be easily manipulated algorithmically.

The partial order between the send and receive events of Figure 1 is shown in
Figure 2. In this figure, only the ‘immediately precedes’ order is shown. The MSC in
Figure 1 describes an interaction between three processes, P1, P2 and P3. Process
P1 sends the message M1 to P2. After receiving that message, process P2 sends two
messages, M2 and M3 to P3. After receiving M3, process P3 sends the message M4
back to P2 and later also sends the message M6 to P1. Process P2, after receiving
M4, sends M5 to P1. The message M5 is received by process P1 before the message
M6. The send events of the two messages, M5 and M6, are unordered.

Definition 2.2 The concatenation of two MSCs My = {Vi, <1, P, N1, L1, T1, N1, my)
and My = (Va, <2, P, Na, La, Ta, Na, ma) over the same set of processes P and dis-
joint sets of events Vi N Vo = B, denoted My Ma, is (Vi U Vo, <, P, N1 U N, L1 U
Lz, T1 UTQ, N1 UNQ, my Um2>, where

<=<1U<2U{(p,q) | Li(p) = La(g) ApE VI Ag € Va}

That is, the events of M, precede the events of M5 for each process, respectively. If
M = My My, we say that M is a prefir of M. Notice that there is no synchronization
of the different processes when moving from one node to the other. Hence, it is possible
that one process is still involved in some actions of one node, while another process
has advanced to a different node.

Pl P2 [P1] [P2] [P3]
Connect Approve
Pl P2 [P1] [P2] [P3]
Fail _
Req_service
Report

Figure 3: An HMSC graph

Since a communication system usually includes many (or even infinitely many)
such scenarios, a high level description is needed for combining them together. The
standard description consists of a graph called HMSC (high level MSC), where each
node contains one MSC as in Figure 3. FEach maximal path in this graph (i.e., a
path that is either infinite or ends with a node without outgoing edges), starting
from a designated initial state, corresponds to a single ezecution or scenario. Such an
execution can be used to denote the communication structure of a typical (aka ‘sunny
day’) or an exceptional (aka ‘rainy day’) behavior of a system, or a counterexample
found during testing or model checking.

Definition 2.3 An HMSC N s a triple (S, 1, s0,¢) where S is a finite set of states,
each labeled by some MSC over the same set of processes, and with sets of events
disjoint from one another. The mapping ¢ associates the state s with an MSC ¢(s).
T C 8 X 8 is the edge relation and the initial state 1s sp € S. An execution of N is an
MSC € = e(sg) e(s1) ¢(s2) ... associated with a path of N that starts with the initial
state so and either ends with a state without outgoing edges, or is infinite.

Figure 3 shows an example of an MSC graph where the node in the upper left
corner 1s the starting node. Note that the executions of this system are either finite
or infinite. In Figure 3, process P2 may send its Report message after process P1 has
progressed into the next node and has sent its Req_service message.

3 MSC Decomposition

The HMSC model combines the visual notation of message sequence charts with the
ability to describe repetitions and alternative computations. In this section we will
show that this, seemingly powerful model, cannot describe some basic finite state
communication protocols. The main problem lies within the requirement that the
send and receive events in each node must be matched.

P1 P2

€;
l;
€it1
fi
n; li—l—l
e
+2 Jix1
[
Nit1 2
fite

Figure 4: A prefix of an MSC execution that cannot be decomposed

We want to exemplify that there are finite state protocols that do not allow a
finite HMSC representation. To do that, we show an infinite executions & of a finite
state protocols with the following property: There is no way to write £ as an infinite
concatenation of finite MSCs. Given the above property, it is not possible to construct
an HMSC such that ¢ would correspond to a traversal of one of the HMSC paths.
Thus, we cannot represent such a system using HMSCs.

As an example, consider the MSC whose prefix appears in Figure 4. To show that
it cannot be decomposed, we will show an infinite sequence of events that cannot be
separated to different MSC. We will start with the send event e; and receive event f;.
Obviously, because of the compulsory matching in HMSCs, they must belong to the
same MSC node. We have a send event [; preceding f;, on the same process line, while
its corresponding receive event n; succeeds the send e; matching with f;. Thus, the
events /; and n; must be in the same node with ¢; and f;. For the same reason, we
have that e; 11 and f;41 must belong to the same node with /;, and n; and so forth.

While the repeated crossing of message edges seems to be untypical for MSCs,
the above behavior £ describes a possible execution of an actual protocol [16], where
messages and acknowledgements are being sent between two processes, with (bounded)
buffering.

4 Compositional MSCs

In order to represent communication protocols, whose description could only be ap-
proximated using standard MSCs, we suggest an extension of the MSC standard.
Intuitively, a compositional MSC, or CMSC, may include send events that are not
matched by corresponding receive events and vice versa. An unmatched send event

Figure 5: A decomposition of the execution in Figure 4

may be matched in future HCMSC nodes (on some path). Similarly, an unmatched
receive event may be matched in previous HCMSC nodes. The definition of a CMSC
is hence similar to an MSC, except that unmatched send and receive messages are al-
lowed. (For its similarity to Definition 2.1, we will omit repeating the formal definition
with the corresponding change.)

We denote an unmatched send by a message arrow, where the receive end (the
target of the arrow) appears within an empty circle. Similarly, an unmatched receive is
denoted by an arrow where the send part (the source of the arrow) appears within a
circle. Events occurring in an CMSC are also denoted as real events, whereas their
missing counterparts are called wvirtual events. In an CMSC arrows where both the
send and the receive are virtual events are forbidden. Moreover, we also disallow a
virtual receive event to be followed by a real receive event of the same type in the same
CMSC node. Similarly, we disallow a virtual send event to be preceded by a real send
event of the same type in the same CMSC node. In Figure 5, we can see an HCMSC
that represents the execution that is approximated in Figure 4.

Next we define a special case of CMSCs:

Definition 4.1 A left-closed CMSC is a CMSC that does not contain unmatched
receive events.

The semantics of a left-closed CMSC is defined in exactly the same way as in the
semantics definition. The only difference is that only send events are allowed to be

unmatched. We define the concatenation between a left-closed CMSC and a CMSC
as follows:

Definition 4.2 The concatenation of two CMSCs My = (Vi, <4, P, N, L1, T, N1, my)
and My = (Va, <2, P, N, Lo, Ty, No, ma), denoted My Ms, is defined when the fol-

lowing conditions hold:
o M is left-closed.

e For any type t, the number of unmatched receive events of type t in Ms is at
most equal to the number of unmatched send events of type t in M.

L4 VlﬁVQIQ).

Define a matching function m that pairs up unmatched send events of My with un-
matched recewwe events of My according to their order on their process lines. That
18, the ith unmatched send of some type in My s paired up with the ith unmatched
recewe event of the same type in My. We require that each two unmatched events will
be mapped to the same name. Notice that the function m is uniquely defined.

The concatenation is then defined as follows: (ViUVa, <, P, NyUNy, L1ULs, T1 U
Ta, N1 U Na, my Uma Um), where

<=< U< U{(pg) | Lp) = L@ ApeVingeVa}U

pa) | (p,g) EmAT(p) =sAT(q) =1}

It is easy to see that a concatenation always results in a left-closed CMSC. Moreover,
if My and M5 both satisfy the fifo restriction, then MM, also does. HCMSCs are
defined using CMSC nodes, in an analogous way to Definition 2.3,

5 TUndecidability

Extending the MSC standard allows representing the execution of a bigger class of
protocols than what is allowed by the I'TU standard. However, unsurprisingly, with
the added expressiveness we loose some of the power of analyzing such systems.

Unlike simple HMSC, one cannot decide even the trivial properties of this HCMSC,
e.g., whether a particular message can be sent or received in at least one computation.
The undecidability reduction will be from Post Correspondence Problem (PCP). An
instance of PCP is a set of pairs of words

C = {(v1,w1), (va,wa), ..., (Um, Wm)}

over some mutual alphabet 3. We want to find out if we can find a nonempty sequence
of indexes 1,4s,...4, such that v, vy, ...v;, = w;,w;, ... w;, and i, = 1. Using
a suitable encoding we may assume that whenever w;, w;, ... w;, _, w1 1s a prefix of
Vi, Viy ... Vi, _, U1, then these two words are equal.

We will construct a HCMSC with five processes P to Ps, and with CMSC nodes
By, By, ..., Ep, By, B, . ELF P

e Messages from Py to P correspond to the letters of . Each CMSC FE; contains
a sequence of unmatched send events from Py to P, representing the sequence of
messages of v;. Each CMSC E;’ contains a sequence of unmatched receive events
from P; to Ps, representing the sequence of messages of w;.

o Messages from Ps to P4 correspond to the index of the PCP word being sent.
Each CMSC E; contains also a single unmatched send from Ps to P, representing
the current index 7. Each CMSC F;’ contains the corresponding unmatched
receive event.

The HMSC graph starts at some initial node F'; which contains only one unmatched
send from P; to Ps. Then one can repeatedly take nodes of the form F;, followed
by nodes of the form E;’, any number of times. From the node labeled by E’ we
have a transition to a sink node F’ (i.e., a node with no outgoing edges) which con-
tains a message from Ps, then a message from P, to P5; and finally an unmatched
receive (matching the send from node F) from P; to Ps. Notice that whenever the
message from P; to Ps is received, the corresponding word v;, ...v; 1s a prefix of
wi, ...w;, and ¢, = 1. By the assumption on PCP solutions we get equality, hence
a solution. Thus, the message from P; to Ps is received if and only if iff there is a
nonempty solution to the corresponding PCP instance.

The undecidability result above is related to the fact that HCMSCs (as HMSCs) can
describe infinite state systems. When restricting to finite state systems (in particular,
the message queues are finite), we regain decidability.

6 Balanced HCMSCs

A natural restriction for HCMSC is to require that each maximal execution defines a
left-closed CMSC. Note that we want to allow executions with pending send events.
For example, the HCMSC of Figure 5 is such that every finite execution is a left-closed
CMSC with pending sends. However, the (unique) infinite execution corresponds to

an (infinite) MSC.

Definition 6.1 An HCMSC is balanced if the execution of every finite path starting
with the initial state is a left-closed CMSC.

We show in the following how to test whether a HCMSC is balanced. Assume that
M = c¢(sg)e(s1) - - c(spn) is a CMSC associated with a finite path y = sg, s1,..., s, of
the HCMSC N which starts in the initial state sg. Let ¢ be a type, then the t-deficit
D:(x) of x is the difference between the number of send events and the number of
receive events of type ¢ in y. A necessary condition for N to be balanced is that
D:(x) > 0 for every loop x and every type t. Note also that a balanced HCMSC N
has bounded message queues if and only if D;(x) = 0 for every loop x in N and every
type t. More generally, an HCMSC N = (8,1, sg,¢) is balanced if and only if every
node which is accessible from the initial node satisfies the following condition: Assume
that the ith instance line contains unmatched receives of type t. Then Di(x) > =
for all paths x from sg to s' with (s',s) € 7.

We describe now an algorithm for checking that an HCMSC N is balanced. We
define for each state s and each type ¢ the t-deficit di(s) of s as the difference between
unmatched sends of type ¢ and unmatched receives of type ¢ in s. We can view N as

a weighted directed graph G¢(N) = (S, 7,7), with edges weighted by v(s',s) = d¢(s').
Then all we have to do is to check that G(N) has no cycle with negative weight
and that for all states s, the minimal weight d of a path from sy to s’ is such that
d > x, where z is the number of unmatched receives of type t in s and s’ runs over all
predecessors of s, (s',s) € 7. We can apply either a dynamic programming algorithm,
which actually computes the shortest paths between all pairs of nodes in time O(|S|?).
Alternatively, we can use the Bellman-Ford algorithm, [4]. This algorithm computes
in time O(|S||7]) all shortest paths from a given source in a graph G with negative
weights, provided that G contains no negative cycle (detecting such a cycle, if one
exists). Doing this for all graphs G¢(N) yields an O(|P|?|8]|r|) algorithm for checking
whether N is balanced.

We conclude this section with a remark on the regularity of the set of executions
of an HCMSC. Note first that bounded message queues are not a guarantee that the
set of linearizations of executions in an HMSC or an HCMSC is regular. In the case
of HMSCs a syntactic restriction which is sufficient for regularity has been proposed
in [3, 12]. This condition states that the communication graph of every loop in the
HMSC must be strongly connected. The communication graph of an MSC M is a
directed graph with vertex set consisting of all processes which occur in M. An edge
exists from process P to process) if there is a message from P to ¢ in M. The
communication graph of a path 7 in an HMSC is the communication graph of the
MSC associated with m. We show in the following a similar syntactic condition for
HCMSC which is sufficient for obtaining a regular set of linearizations, provided that
the message queues are bounded. For this we define the communication graph of an
CMSC M as follows. As before, vertices are those processes with events occurring in
M. We have an edge from P to) if there is a (matched or unmatched) send event on
P with corresponding receive end on). As before, we require that the communication
graph of any loop in the HCMSC is strongly connected.

Proposition 6.2 Let N be an HCMSC with bounded message queues, i.e., the deficit
of every execution x of N is such that Di(x) < k, for some constant k depending on
N and for any type t. Let us assume that the communication graph of any loop in N
1s strongly connected. Then the set of linearizations of N 1is reqular.

The proposition above can be shown using the same ideas as for HMSCs. The differ-
ence here concerns the number of states of the automaton accepting the linearizations
of N. We can show that for any linearization of an execution ¢(sg)c(s1) - -e(sm) of N
it suffices to store a polynomial number of prefixes of CMSCs ¢(s;). We use here the
fact that the deficit D;(x) is at most equal to the size of the HCMSC N.

7 An HCMSC Representation for Finite State Sys-
tems

The HCMSC extension suggested in this paper broadens the scope of HMSCs and
allows us to capture many more protocols. We present now an automatic transla-
tion from finite state systems based on asynchronous message passing to (balanced)
HCMSC.

We are given a finite state space G = (5,5, E, X)), with states S, initial states
So C S, edges E C S x X x5, over a set of actions 2. The actions in X are send,

10

recetve and local actions. The states in S contain information about the system,
including the contents of the various interprocess message queues.

We start with a trivial translation, which establishes the theoretic possibility of
performing such a translation for a class of finite state systems with asynchronous
message passing. We later proceed to suggest a more informative translation. The
trivial translation is performed by constructing the dual graph H = (N, Ny, F) of G
as follows:

e The nodes N of H correspond to the edges of GG. That is, N = E.

e The wnitial nodes Ny C N of H correspond to the edges of G that exit from an
initial state of Sy. That is,

No={s—5s|s— s €FENns€ Sy}

e The edges F' of H correspond to pairs of edges of G such that the target of the
first edge is the source of the second. That is,

F={e; —es|dsy, 89,51 =51 —> s, s —> s9 € E}

The graph H is an HCMSC, where each node in N is a trivial MSC, representing a
single (unmatched) message passing event of send or receive, or a local event.

The above trivial construction does not provide any new insight, since the HCMSC
graph follows closely the state space and each CMSC block includes a single local or
unmatched event. We thus look into a translation that would often construct more
reasonable HCMSCs. The translation aims at optimizing the following goals:

1. Minimize the number of unmatched messages appearing in the individual CMSC
blocks, if possible obtaining an HCMSC without any unmatched messages (how-
ever, recall from Section 3 that this is not always an attainable goal).

2. Present relatively long scenarios with the CMSCs, in order to obtain an intuitive
understanding of the interprocess interaction.

3. Minimize the number of individual CMSC blocks, so that the HCMSC would

not become too big (there can be much more sequences than there are states).

Notice that the second and third goal may contradict each other in some systems. The
above ‘trivial’ translation gives a rather reasonable solution to the third goal, while
providing unacceptable solution for the second goal. Notice further that the size of an
HCMSC graph can easily get prohibitively large. Thus, in practice, the HCMSC con-
struction algorithm should be applied only to small parts of communication protocols,
rather than to complete protocols.

It is easy to see that different execution paths in the state space may correspond to
a single CMSC. For example, consider an execution path in which we have a send from
P1 to P2, then the matching receive, then another send of the same type, and finally
another matching receive. Consider now another execution path, in which we have
first the two send transitions, and then the two receive transitions. These two paths
obviously correspond to the same MSC. The partial order reduction algorithms were
constructed for this particular reason. The sleep set method of Godefroid, adapted to
our case, is in particular appropriate.

11

The Algorithm

Definition 7.1 For a letter e € ¥ (an event), define the set of events dep(e) that
mnclude exactly events f such that either e and f are from the same process, or e and
f are a matching pair.

Notice that this definition is tailored for a message passing communication system and
need to be adapted when using other kinds of concurrency (e.g., with shared variables).

Let ‘<’ be a total order over the events in X satisfying that all the receive events
precede the send events. Denote by en(s) the set of transitions that are enabled at a
state s.

1. Make a first guess of a set of nodes such that every cycle must pass through one
of these nodes. One possibility is to set Z C S to include every node in which
all the queues are empty. Another possibility is to start with the single set that
includes the initial node. One heuristics is to perform simple DFS on the state
space and include in Z every node in the target of a back edge. Notice that this
is not optimal (finding a minimal set of such nodes is an NP-complete problem).
The nodes in Z are new cutpoints for the finite state space in the sense that
every cycle must pass at least one of these points. Thus, the paths from 7 to Z
contain no cycles.

2. Start a menimized DFS from nodes in Z or at an initial state. The search stops
at nodes in Z (after progressing at least one step) or to a terminating node.
The minimization algorithm, related to Godefroid’s sleep set algorithm [5], and
to the variant of that algorithm presented in [15] is shown in Figure 6. This
version allows removing nodes that have an empty number of successors under
the reduction.’

3. Construct CMSCs for the paths from the nodes in Z according to the paths
generated during the reduced DFS of the previous step. Since the number of
paths can be enormous, one can split the reduced graph further, e.g., at points
that have a relatively large number of incoming or outgoing edges. In this way,
we generate shorter paths, but possibly more of them. The matching algorithm
in Section 7.1 can be used to match corresponding send and receive events in the

same CMSC.

4. Connect the separate CMSCs in the following way: If one CMSC ends at some
state s € Z and another CMSC starts with that state, make an edge from the
former to the latter.

Properties of the Algorithm

Definition 7.2 Define the relation —’ between strings over ¥ by o0 — p if ¢ =
vefw and p= v few, where v,w are sequences of transitions and f, e are individual
transitions and f & dep(e). Let 5 be the transitive and reflexive closure of —.

Definition 7.3 Define the relation T’ between strings over ¥ such that v C w when

I Another change from the original algorithm is that the new nodes are pairs of a state and a sleep
set, and two states that are paired with different sleep sets are considered different nodes.

12

function expand_node(s, sleep);
local explored, working_set, new_sleep, fixed;
explored := {;
frred .= false;
if en(s) = 0 then return true fi;
working_set := en(s) \ sleep ;
while working_set # @ do
« := biggest action in working_set according to ‘<’;
working_set :=working_set\{a};
s’ = a(s);
new_sleep:=(sleep U explored) \ dep(a);
explored := explored U {a};
if s’ € Z orelse s' is terminal orelse exists_node(s’, new_sleep)
orelse expand_node(s', new_sleep) then

frred := true;
create_edge((s, sleep), a, (s', new_sleep)) fi;
fi
end while;

if fixed then store_node_in_hash(s, sleep);
return fized;
end expand_node.

Figure 6: A reduced state space generation algorithm

e v is smaller than w according to the alphabetical order based on ‘<’.
o w—sw, and v is a prefiv of w'.

Lemma 7.4 If v C w, then an CMSC with a linearization v is a prefiz of an CMSC
with a linearization w.

Sketch of proof. We can show by induction on the number of permutations done
in ‘-3’ that the transitions of each process in v are a prefix of the transitions of the
same process in w. This follows from definition 7.1. [|

Lemma 7.5 If v C w, v is not a prefiv of w, and w is generated during the reduced
DFS, then v is not generated by the algorithm.

Sketch of proof. Take the longest common prefix u of v and w (u can be empty).
Let b be the first letter after v in w, and a the first letter after v in v. Then from the
definition of the relation ‘C’, we have that a < b, a &€ dep(b), and b appears in v after u,
following some sequence of transitions «’ that are not included in dep(b). According to
the algorithm, during the DFS, u b is reached before uwa. When the search backtracks
from u, it has b in its sleep set, since a ¢ dep(b). If the search reaches wu', then b
is still in the sleep set, since b is independent of all the events in u’. Because of this,
uw' b is not generated.]

Lemma 7.6 If v is not generated during the search, then there is some w such that
v C w, and w is generated.

13

Sketch of proof. First, observe that ‘C’ is a reflexive and transitive relation. The
proof is by an induction on the order ‘C’. Suppose that v is not generated. This is
because v = uu’ aw for some sequences u, u’ and w, and a transition a, and a was
in the sleep set paired with the state obtained after the reduced DFS has searched u.
Furthermore, the transition a was taken after u, and is independent of the transitions
in v’ and is bigger according to ‘<’ than the first letter in w’. Thus, we have that
v C wauw w. Then, by the induction hypothesis, either wau’w is expanded, or a
string w’ such that vav’w C w’ is expanded. But by the transitivity of C, we have
the result. [|

7.1 The Matching Algorithm

For each CMSC node M constructed by the above algorithm and for every possible
deficit d for messages of type ¢ on paths to M we create a HCMSC node My with the
same events as M and match the events as follows.

1. Mark the first d receive events of type t in My as ‘unmatched’ (there may be
fewer than d such messages).

2. Of the remaining send and receive events of type ¢, pair the ith send with the
tth receive.

3. If there are send events of type ¢ that are unpaired in the previous step, mark
them ‘unmatched’.

8 Conclusion and Implementation

HMSCs are a useful and standard notation for describing executions of communica-
tion protocols. We showed that the requirement of pairing up send and receive events
in each MSC node prohibits the representation of a simple finite state protocol. We
presented an extension of the HMSC notation, which we call HCMSC. This notation
circumvents this problem. With the extension, we presented an algorithm for auto-
matically generating the HCMSC structure for finite state communication protocols.
We have implemented this algorithm as an extension of the PET system [6]. The im-
plementation is written using 800 lines of SML/NJ code, and in addition exploits the
C code of the MSC/POGA [9] system for generating the HCMSC visual structure.
Acknowledgement. We would like to thank Mihalis Yannakakis, who suggested the
counterexample in Figure 4, which is simpler than our original counterexample.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.
In Proceedings of the 22nd International Conference on Software Engineering,

Limerick (Ireland), pages 304-313, ACM, 2000.

[2] R. Alur, G. H. Holzmann, and D. A. Peled. An analyzer for message sequence
charts. Software Concepts and Tools, 17(2):70-77, 1996.

14

[3]

[13]

R. Alur and M. Yannakakis. Model checking of message sequence charts. In
Proceedings of the 10th International Conference on Concurrency Theory CON-
CUR’99, Eindhoven (The Netherlands), LNCS 1664, 1999. Springer.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT
Press, Cambridge, Massachusetts, 1999.

P. Godefroid and P. Wolper. A partial approach to model checking. Information
and Computation, 110(2):305-326, 1994.

E. Gunter and D. Peled. Path exploration tool. In Proc. of Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’99), Amsterdam,
The Netherlands, LNCS 1579, pages 405-419, 1999. Springer.

L. Hélouéet and P. Le Maigat. Decomposition of Message Sequence Charts. In
Proc. of the 2nd Workshop on SDL and MSC (SAM2000), pp. 46-60, 2000.

J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. Thiagarajan. On mes-
sage sequence graphs and finitely generated regular msc languages. In Proceedings
of the 27th (ICALP’00), Geneva (Switzerland), 2000, LNCS 1853, pages 675-686,
2000. Springer.

G. Holzmann. Formal methods for early fault detection. In Proc. of the jth Int.
School and Symposium on Formal Techniques in Real Time and Fault Tolerant

Systems, Uppsala (Sweden), 1996.
ITU-T Recommendation Z.120, Message Sequence Chart (MSC), 1996.

S. Mauw and M. Reniers. High-level message sequence charts. In SDL’97: Time
for Testing - SDL, MSC and Trends. Proceedings of the 8th SDL Forum, Euvry
(France) 1997, pages 291-306, 1997.

A. Muscholl and D. Peled. Message sequence graphs and decision problems on
Mazurkiewicz traces. In Proceedings of the 24th Symposium on Mathematical
Foundations of Computer Science (MFCS’99), Szklarska Poreba (Poland) 1999,
LNCS 1672, pages 81-91, 1999. Springer.

A. Muscholl, D. Peled, and Z. Su. Deciding properties of message sequence charts.
In Proc. of the 1st International Conference on Foundations of Software Science
and Computation Structures (FoSSaCS’98), Lisbon, Portugal, 1998, LNCS 1378,
pages 226-242, 1998. Springer.

A. Muscholl and D. Peled. High-level message sequence charts and finite-state
communication protocols. Submitted, 2000.

D. Peled. All from One, One for All: on Model Checking Using Representatives.
In Proc. of Computer Aided Verification, 5th International Conference, CAV 93,
Elounda, Greece, LNCS 697, pages 409-423, 1993. Springer.

A. Tanenbaum, Computer Networks, Prentice Hall, 1988.

M. Fowler, K. Scott. UML Distilled: Applying the Standard Object Modeling Lan-
guage, Addison-Wesley, 1997.

15

