Temporal Debugging for Concurrent Systems

Elsa Gunter
Department of Computer Sceince
New Jersey Institute of Technology

Doron Peled
Dept. of Elect. and Computer Eng.
University of Texas at Austin

October 15, 2001

Abstract

1 Introduction

Temporal logic is a specification formalism that is often used to express prop-
erties of software and hardware systems. Model checking techniques allow us
to check a finite state description of a system against its temporal specification,
and provide a counter example in case the property does not hold.

In this paper we suggest to extend the use of a temporal specification, and
use temporal logic for interactively controlling the debugging of systems. We
allow specifying temporal properties of finite sequences. A debugger is enriched
with the ability to progress from one step to another via a finite sequence of
states that satisfy a temporal property.

The usual mode of debugging involves stepping through the states of a pro-
gram by executing one or several transitions (with different granularities, e.g., a
transition can involve the the execution of a procedure). Debugging concurrent
systems is harder, since there are several cooperating processes that need to be
monitored. Stepping through the different transitions can be applied in many
different ways. Instead, we allow applying a temporal property that describes
sequence of concurrent events that need to be executed from the current state,
leaping into the next state.

We interpret linear temporal logic (LTL) on finite sequences. The automatic
translation from LTL to finite state automata in [3] is adapted to include the fi-
nite case. We describe various search algorithms that can be used for generating
appropriate paths and states during a debugging session.

2 Defining LTL on Finite Sequences

One of the most popular specification formalisms for concurrent and reactive
systems is Linear Temporal Logic (LTL) [4]. Its syntax is as follows:

o= (1) |1 |1 Ve | o1 Apa | Opr | Opr | Opr | Opr | o1 U vz | o1V pap

where p € P, with P a set of propositional letters. We denote a propositional
sequence over 2” by o, and its suffix starting from the ith state (where the first
state is numbered 0) by ¢(?. Let |o| be the length of the sequence ¥, which
can be either a natural number or w (for an infinite sequence). The semantic
interpretation of LTL is as follows:

o= Qgiff lo| > 1 and o) = .
o = Op iff for each 0 < i < |o|, ¢ = ¢.

o = Oy iff there exists 0 < i < |o| such that ¢ |= ¢.

o | U iff U =4 for some 0 < j < |o| so that for each 0 < i < j,
@) =
o ©.

o | — iff it is not the case that o = .

o = ¢V iff either o = ¢ or o = 9.

The rest of the operators can be defined using the above operators. In particular,
Op = =0, 9 A1 = ~((=p) V (=), 9V = ~((=p)U (1)) The operator
O is a ‘weak’ version of the () operator. Whereas ()¢ means that ¢ holds in
the suffix of the sequence starting from the next state, Q¢ means that if the
current state is not the last one in the sequence, then the suffix starting from
the next state satisfies .

We distinguish between the operator (), which we call strong nexttime, and
O, which we call weak nexttime. Notice that

(Ow) A (O¥) = Olp A ¥), (1)

since ¢ already requires that there will be a next state. Another interesting
observation is that the formula (false holds in a state that is in deadlock
termination.

The operators 4 and V can be characterized using a recursive equation,
which is useful for understanding the transformation algorithm, presenting in
the next section. Accordingly, pU) =9V (@ AQpU) and p Vi) = A (o V

Olp V).

3 Finite LTL Translation Algorithm

We modify the algorithm presented in [3] for translating an LTL formula ¢ into
an automaton B = (S, 1,0, F, D, L), where S is a set of states, I C S is a set of
initial states, 8 C S x S is the transition relation, FF C S are the accepting states,
D is a set of state labels, and L : S — D is the labeling function. Note that B is an
automaton on finite words, unlike a Biichi automaton, which is usually resulted
from translating LTL formulae over infinite sequences, and which recognizes
infinite sequences.

As a preparatory step, we bring the formula ¢ into negation normal form as
follows. First, we push negation inwards, so that only propositional variables
can appear negated. To do that, we use LTL equivalences, such as =<y = O,
One problem is that pushing negations into until (/) subformulas can explode
the size of the formula. To avoid that, we use the operator release (), which
is the dual of the operator until. Next, we remove the eventuality (<) and
always (0O) operators, using the until and release operators and the equivalences
O = true U Y and Oy = False Vo).

The algorithm uses the following fields for every generated node of B:

id A unique identifier of the node.
incoming The set of edges that are pointed into the node.

new A set of subformulas of the translated formula, which need to hold from
the current node and have not yet been processed.

old A set of subformulas as above, which have been processed.

next A set of subformulas of the translated formula, which have to hold for
every successor of the current node.

strong A flag that signals whether the current state must not be the last one
in the sequence.

The algorithm starts with a single node, having one incoming edge from a
dummy node called init. Its field new includes the translated formula ¢ in the
above normal form, and the fields old and next are empty. A list completed-nodes
is initialized as empty. The algorithm proceeds recursively: for a node = not yet
in completed-nodes, it moves a subformula n from new to old. The algorithm
then splits the node z into left and right copies while adding subformulas to the
fields new and next according to the following table. The fields old, incoming
and strong retain their previous values in both copies. The algorithm continues
recursively with the split copies. The column set strong indicates when the
current state cannot be the last one in the sequence, namely the formulas in the
nezt field are upgraded from weak nexttime to strong nexttime. It is sufficient
to use the strong field rather than keeping two separate fields, for the weak and
for the strong nexttime requirements, because of Equation (1).

| Formula | new left | next left | set strong left | new right | next right]

pUn {ny | {nUn} v {n} 0
pyn {n} {nVn} {u,n} 0
g {n} [{n} 0
pAn | {p.n} [—

On 0 0 — —
Ow 0 0 v — —

When there are no more subformulas in the field new of the current node =z,
x is compared against the nodes in the list completed-nodes. If there is a node
y that agrees with x on the fields old and nezt, one adds to the field incoming
of y the incoming edges of z (hence, one may arrive to the node y from new
directions). Otherwise, one adds x to that list and a new node is initiated as
follows:

a) id contains a new value,

b) the incoming field contains an edge from z,

(
(
(c) the new field contains the set of the subformulas in the next field of z,
(d) the fields old and next are empty, and

(

e) the field strong is initially set to false.

After the above algorithm terminates, we can construct the component of
the automaton B for the translated automaton ¢ as follows. The states S are the
nodes in completed-nodes. Let P be the set of propositions that appear in the
formula ¢. The set of labels D are the conjunctions of propositions and negated
propositions from P (thus, there are 3F labels in D, since each proposition may
appear, not appear, or appear negated). In the constructed automaton, each
node z € S is labeled by the propositions and negated propositions in its field
old. The initial nodes I are those which have an incoming edge from the dummy
node init. The transition relation ¢ includes pairs of nodes (s, s') if s belongs to
the field init of s'. The accepting (final) states satisfy the following;:

e For each subformula of ¢ of the form U n, either the old field contains
the subformula n, or does not contain p i/ 7.

e the strong bit is set to false.

The accepting condition for infinite sequences is an extended form of generalized
Biichi automata. As in generalized Biichi automata, an infinite sequence is
accepting if it traverses at least one node per accepting set infinitely often. A
finite sequence is accepting if it ends in a state from the finite accepting set.

We may check that there is at least one path from a state in I to a state in
F. Otherwise, the automaton does not accept any sequence (and no sequence
is accepted by the formula ().

We also denote the system automaton as 4 = (X, J, A, D,G), where X are
the states, J C X are the initial states, A C X x X is the transition relation,
D are the set of labels (same as for B), and G : X — D is the labeling function.
Here there are no accepting states. The automata product B x A has the
following components:

e The states R are a subset of S x X where L(s) = G(X), i.e., {(s,z)|L(s) =
G(x)}-

e The initial states are (I x J) N R.

e The transition relation includes the pairs ((s, z), (s, z")), where (s, s") € ¢,
(z,2") € A.

e The accepting states of B x A are (S x F) N R. That is, a pair in R is
accepting, when its B component is accepting.

e The labeling of any pair (s,z) € R is the same as L(s) (which is the same
as G(z).

4 The Temporal Debugger

We exploint temporal specification to control stepping through different states
of a concurrent program. The basic operation of a debugger is to step between
different states of a program in an effective way. While doing so, one can obtain
futher information about the behavior of the program.

A temporal step consists of a finite sequence of states that satifies some
terporal propoerty . Given the current global state of the system s, we are
searching for a sequence £ = s¢sj . .. S, such that

® 50 =5.
e 1 is smaller than some limit given (perhaps as a default).

e {Fo.

The termporal stack consists of the different sequences, used in the simulation
obtained so far. It contains several temporal steps, each corresponding to some
temporal formula that was satified. The end state of a temporal step is also the
start state of the next step.

The simulation (debugging) session consists of searching the program through
the search stack. At each point we may do one of the following (see Figure 1):

Stack Remove Backtrack Add

&1 &1 &1 &

&'
& 3

€3

Figure 1: Temporal stack operations

e Introduce a new termpoal formula and attempt to search for a temporal
state from the current state. The new temporal is added to the search
stack.

e Romove a step. In this case, we are back one step in the stack. We forget
about the most recent temporal formula given, and can replace it by a
new one in order to continue the search.

e Backtrack the most recent step. The depth first search process of the
latest step resumes from the place it was stopped. This is an attempt to
find another way of satisfying the last given formula. We either find a new
temporal step that replaces the previous one, or report that no such step
exists (in this case, we are back one step in the stack).

o We allow also simple debugger steps, e.g., executing one statemet in one
process. Such steps can be described as trivial temporal steps (using the
nexttime temporal operator).

Note the following: Searching a path can be done using depth first seach
on pairs: a state from the joint state space of the programs, and a state of the
property automaton. Furthermore, each new temporal formula requires a new

depth first search space. Recursion is handled within that space. Thus, when
starting the depth first search for formula ¢1, we use one copy of the state space.
When seeking a new temporal step for ¢o, we start a fresh copy. If we backtrack
the second step, we backtrack the second depth first search, looking for a new
fiinite sequence that satisfies 5. If we remove the last step, going back to the
formula ¢, we remove the second state space information, and backtrack the
first state space. On the other hand, the temporal stack contains one path,
consisting of the concatenation of the various temporal steps. We may want to
display the path obtained by the search.

5 Stepping Modes

A debugger or a simulator allows to step from one state to another by executing
a transition enabled from the current state. Given that there are several enabled
transitions, some choice is left to the user. We extend this capability and allow
to perform ‘temporal steps’, which are finite sequences of states that satisfy a
given temporal formula ¢. We are thus confronted with several choices:

1. The size of the step. This can be either

e a maximal length sequence of states (starting from the current one)
that satisfies ¢, or

e a minimal length sequence of states.

2. The move between different temporal steps. That is, the order in which
the system presents the temporal steps. This is greatly affected by the
search algorithm that is used.

We need to define precisely what does a minimal and a maximal path mean.
The order between paths is the prefix order ‘C’. Thus, p C o if there exists p'
such that o = p.p'.

A path generated during the search contains pairs of the form (s, z), where
s is a property automaton state and x is a system state. A situation can exist,
where there is an infinite sequence of increasingly bigger steps o1 C 02 C . . ., all
of them satisfy the current step formula ¢. For example, consider the property
Op and a cyclic path in which all the system states satisfy p. Since a step has
to be finite, we will restrict the search to a maximal path that does not contain
the same pair twice.

Polarity of a Temporal Step

To illustrate the first point, consider a specification of type Op. A temporal step
includes a sequence in which every state satisfies p. Intuitively, we would like
such a sequence to be maximal, since a longer sequence gives us more states and

hence more information on how p is preserved (reacall that for finite LTL, Op
does not mean an infinite sequence in which every state satisfies p. Similarly,
Op should result in a minimal sequence that ends with a state that satisfies
p. We allow the user to select between searching for a minimal or a maximal
search.

When we find a temporal step that satisfies the current temporal formula,
i.e., when the current property automaton B state s is accepting (denoted by
accept(s)), we report the sequence of system states that are in the search stack.

Assume for the moment that the search we use is Depth First Search. Search-
ing for a minimal temporal step starting from a pair (s,), where s is a prop-
erty automaton state, and z is a system state, is perfomed by by applying
DFS_min(s,z). We assume that accept(s) holds exactly when s € F, i.e., is an
accepting state of B.

DFS _min(s, z):
if accept(s) then
report sequence of system elements from stack;
wait until Backtrack is requested;
else foreach (s',2') such that (s,s’) € §, (z,z') € A
and (s',2") is new to the search, then DFS_min(s’, z');
end DFS_min.

Note that if backtracking is requested by the user, i.e., an alternative tem-
poral step, we do not attempt to continue the search from the current point.
If we did, we might have found a longer path satisfying the current temporal
formula, which violates the attempt to find only minimal steps.

Similarly, when searching for a maximal step, we use DFS_max(s,z), as
follows. In this case, saved-size is a global variable, which maintain the size of
the recursion stack from one call to the other. It is set to the current stack size
when an accepting state is reached. When backtracking to an accepting state,
we check whether the current stack size is the same as the one in saved-size. If
this is the case, we did not find a longer temporal step while searching forward,
and thus the current contents of the stack is a maximal step. Notice that we
may reach a state in two directions: forward, when entering it, at the beginning
of the DFS_min call, and backward, when backtracking from successor states.

DFS _maz (s, z):
if accept(s) then
set saved — size to current size of recursion stack;
foreach (s',2') such that (s,s") € 4, (z,z') € A
and (s',z') is new to the search, then DFS_maz(s’, z');
if accept(s) and saved — size equals current stack size then
report sequence of system elements from stack;
wait until Backtrack is requested;
end DFS_max;

Backtracking Options

There are further parameters for the choice of temporal steps, besides the min-
imality and maximality of the step.

6

e Allowing or disallowing a different step that ends with the same system

step as before. In the former case, we may request an alternative step and
reach exactly the same system state, but pass through a different path on
the way. The latter case is easily obtained by adding a special flag to each
system state that was found during the search.

Allowing or disallowing the same sequence of system states to repeat.
Such a repetition can happen in the following situation. The specification
is of the form (¢p) Vv (&g). Consider a sequence of system states in which
(=p) A (—q) holds until some state in which both p and ¢ start to hold,
simultaneously. Such a sequence can be paired up with different property
automaton states to generate two different paths. Eliminating the repeati-
tion of such a sequence of system states can be obtained by keeping a tree
T of nodes that partitipate in temporal steps reported so far (for a single
given temporal step formula). Each node in the tree consists of a system
state and a repetition counter (since the same state # € X can participate
in a path as many times as |S|. Each time a new temporal step is reported,
the tree is updated. A new step is reported only if during the search, we
deviate at least once from the paths in T'.

Allowing all possible paths with sequence of system states that satisfy
the temporal step formula ¢ or only a subset of them. Typical searches
like depth first or breadth first search do not pass through all possible
paths that satisfy a given formula . If a state (in our case, a pair)
participated before in the search, we do not continue the search in that
direction. For this reason, the number of paths that can be obtained in
this way is limited, and, on the other hand, the search is efficient. There
are topological cases where requiring all the paths results in exponentially
more paths than obtained with the above mentioned search strategies, see
e.g., the case in Figure 2.

discussion

Temporal logic in conjunction with a search is employed by model checking [1, 2]
techniques. There, we want to check whether all executions (sometimes includ-
ing infinite ones) starting with a given program state (usually an intial state)
satisfy a given property. In our context, we are using temporal specification is a
different way, to control the stepping between program states. We are looking

Figure 2: Exponential number of sequences

for finite sequences of states that satisfy a given temporal specification, and
move the current control to the last state of the sequence.

In some sense, our approach is related to the choppy temporal logic of Pnueli
and Rosner [5]. There, one can use temporal specification over finite sequences
and combine them using the chop (C) operator. We are effectively stepping
through different finite sequences and progressing through the execution. Note
that in the temporal semantics of [5], p1Cp2 holds for a path that concatenates
two shorter paths, where the first satisfies p; and the second satisfies y2, re-
spectively. In our case, the last state of one temporal step is the first state of
the next step. Thus, to obtain the same effect as in the choppy logic, we may
want to use p; and Qya.

References

[1] E. M. Clarke, E. A. Emerson, Design and synthesis of synchronization
skeletons using branching time temporal logic. Workshop on Logic of Pro-
grams, Yorktown Heights, NY, Lecture Notes in Computer Science 131,
Springer-Verlag, 1981, 52—-71.

[2] E. A. Emerson, E. M. Clarke, Characterizing correctness properties of par-
allel programs using fixpoints, International Colloquium on Automata,
Languages and Programming, Lecture Notes in Computer Science 85,
Springer-Verlag, July 1980, 169-181.

[3] R. Gerth, D. Peled, M.Y. Vardi, P. Wolper, Simple On-the-fly Automatic
Verification of Linear Temporal Logic, PSTV95, Protocol Specification
Testing and Verification, 3—18, Chapman & Hall, 1995, Warsaw, Poland.

[4] A. Pnueli, The temporal logic of programs, 18th IEEE symposium on
Foundation of Computer Science, 1977, 46-57.

[5] A. Pnueli, R. Rosner, A Choppy Logic, Logic in Computer Science 1986,
Cambridge, Massachusetts, 1986, 306—-318.

10

