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Abstract. This paper describes a modest conservative extension of
HOL90 that allows the results from external decision procedures to be
used within HOL90 without compromising its logical consistency.

1 Introduction

Theorem provers such as HOL90 place a great deal of emphasis on being expres-
sive and on being secure. As a result, they are inherently interactive, sometimes
to the annoyance of the user. On the other hand, decision procedures, such as
BBD’s and model checkers [5, 6], place a great deal of emphasis on being to-
tally automatic and fast. However, they work on restricted languages and their
security is usually checked by hand proof at most. Therefore, the level of trust
that is reasonably put in their results may be somewhat less than the level of
trust reasonably put in the results of theorem provers. To improve the level of
automation of a theorem prover, it is sometimes desirable to call an appropri-
ate decision procedure from within the theorem prover when the problem being
worked on has been reduced to the appropriate subset. PVS [7] is an example of
a theorem prover that makes use of such a link to model-checkers.

The problem arises, however, of how to incorporate the results of an arbitrary
decision procedure within a theorem prover without compromising the security
of the theorem prover. One solution to incorporating decision procedures in a
fully expansive theorem prover, such as HOL90, is to write them as tactics,
conversions, etc. This solution provides the highest security, but often leads to
much less efficient procedures, since they must actually build a proof, not just
decide whether one exists. Also, it doesn’t allow us to directly take advantage
of existing external decision procedures.

In this paper we will describe a mechanism for using external decision proce-
dures from within HOL90 while maintaining HOL90’s high standard of security.
This method should be applicable to any of the family of HOL theorem provers,
and most likely to a much braoder class than that. The basic idea is that each
theorem will carry with it a tag indicating that an external result was used.
This tag is internal to the logic; it is not an external annotation on theorems.
There are two variants of tagging possible; one just documents the fact that an



external procedure was called, and the other records in addition which results
were accepted and used.

The version that records the results that were accepted provides the greatest
documentation, and allows for the subsequent elimination of dependency on
external results should they be proved within the theorem prover. The usefulness
of this method will depend on the number of results from external decision
procedures being relatively small. For those instances when the number of results
from external decision procedures is quite large, we provided a more limited,
but equally secure method for incorporation. Again the theorems using external
results are in essence tagged, but only with that fact that an external procedure
was used, and not with the result itself. In this second method, it will not be
possible to eliminate the tag because the precise result assumed is not recorded.

2 The Library add dec proc

We have added to HOL90 a contributed library named add dec proc which sup-
ports two methods for allowing HOL90 to accept as theorems results from ex-
ternal decision procedures while maintaining the logical consistency of HOL90.
This library consists of a theory dec proc tokens introducing a type and some
constants used for tagging, and functions implementing two new primitive in-
ference rules, corresponding tactics, and a modified version of the goalstack ma-
nipulation functions expand and e. We also include a trivial example defining
the “decision procedure” clearly, used by humans when they don’t wish to give
the details of a proof, and a more substantive example using the method in
conjunction with Peter Homeier’s Verification Condition Generator [4].

To support the tagging in both methods, we introduce a type : dec proc token.
The type : dec proc token is defined to be isomorphic to an arbitrary non-empty
subset of the infinite type : ind. (We use the Hilbert choice operator here to
select such a subset.) Elements of this type are treated as the names of the
external decision procedures. They will be used as arguments to constants that
yield boolean results that will become hypotheses of theorems using the external
procedures in their proofs. Both of the methods we describe work basically the
same way, and we shall describe them in sequence here.

The first of the two methods for accepting external results is somewhat sim-
pler to understand, and more concise, but it is also of less utility. Let proc be the
name of a decision procedure external to the HOL90. To be able to use the library
with either of the two methods, the user must supply a procedure for calling proc

and for notifying the HOL90 of the result. For the first method, we shall assume
that we have an SML procedure call proc : term → unit which returns () :

unit if proc was able to verify the goal, and raises an HOL ERR exception other-
wise. By raising an exception, it can be used as a component of tactics that try
various options depending upon which options succeed or raise an exception. Us-
ing new constant, we may introduce a constant proc : dec proc token to represent
the procedure within HOL90. (If the user does not wish to introduce their own
constant, the library supplies the constant default token : dec proc token which



may be used instead.) With these two pieces, we may make use of the supplied
SML function

trust_proc_result {token = (--‘proc‘--),

dec_proc = call_proc} : term -> thm

which implements the new primitive inference rule

[trusted token proc] ⊢ tm

assuming call proc tm completes without raising an exception. The hypothesis
trusted token proc intentionally may be thought of as an oracle saying whether
proc always proves correct results. If it does, then the hypothesis is true and
we have the desired theorem; if it does not always give correct results, then
the theorem is still valid since the hypothesis is false — it is just meaningless.
Extensionally, trusted token is a constant introduced via constant specification
to be of HOL90 type : dec proc token → bool, and the result of an application
is either T or F, but we cannot in general know which. On the other hand,
the primitive inference rule trust proc result is a proper logical extension to
HOL90 and will require proof that it is a conservative one.

We now have the basic machinery for incorporating external results, at
least for the simple method. However, typically we do not want to use
trust proc result directly, but rather we would prefer to use a version that
works as a tactic on goals on the goalstack. The corresponding tactic

trust_proc_result_TAC : {token = (--‘proc‘--),

dec_proc = call_proc} : tactic

calls trust proc result on the current goal rendered as a term. If the goal
is [a1, . . . , an] ⊢ tm with free variables x1, . . . , xm, then the term to which
trust proc result will be applied is ∀x1 . . . xm. a1 ∧ · · · ∧ an ⇒ tm.

The tactic trust proc result TAC resolves the theorem resulting from the
call to trust proc result (if there is one) with the assumptions of the goal,
and attempts to derive the goal as a theorem. However, the theorem returned
has a hypothesis not occurring (at least not usually) among the assumptions
of the goal, namely trusted token proc. The standard functions expand and e

for applying tactics to the goalstack perform a validity check which assures
that all the hypotheses of the theorem returned by the validation computed
by the tactic are among the assumptions of the current goal. Therefore, the
tactic trust proc result TAC will be rejected by these standard goalstack ma-
nipulation functions. To address this, we have included a modified version of
these functions. The modified version of these two functions performs almost
the same validity checks as before; the one difference is that now they ignore
tagged hypotheses (from either method) among the hypotheses of the validation
theorem. With this modification, trust proc result TAC can be used the same
way as other tactics. This pretty much completes the story (accept for proof of
consistency) for the simple method.



The second method has the same components as the simple method, but in
a more complicated, and informative manner. There are also some additional
functions to make use of some of the added flexibility of this second method.
The tokens generated to name external procedures for the simple method may
be reused for the second method. However, this time the user is expected to
supply an SML function for calling the procedure that returns a term stating
the theorem to be accepted, if there is one. Thus, in our case, we will assume we
have consult proc : term → term. As before, we may now create

use_proc_result {token = (--‘proc‘--),

dec_proc = consult_proc} : term -> thm

which, when applied to the input term in term, implements the primitive infer-
ence rule

[used token proc tm] ⊢ tm
where consult proc in term = tm

provided the term tm returned by consult proc is a closed term, i.e. contains
no free variables. This inference rule is not only more informative (by putting
the result accepted from and external procedure in the hypotheses), but it is
also more broadly applicable than the one given by trust proc result. The
rule can be used to couple HOL90 with calculators (such as computer algebra
systems), as well as decision procedures. For example, it could be used to couple
HOL90 with the Unix utility dc. In that case, the term to which it would be
applied would be a complex numeric expression and the result would be a term
stating that the expression was equal to its numeric value.

It will oftentimes be the case that we do not want to make use of this extra
flexibility. Then we would like to have just one method for calling a given external
procedure. To facilitate using one kind of calling function where the other is
required, we supply two coercion functions: trust use and use trust. Given
call proc used with the simple method, we could define consult proc by:

val consult_proc = trust_use call_proc

The term that will be returned is the universal closure of the term to which
consult proc is applied. Similarly, if we have consult proc and we wish to
define call proc, we could use

val call_proc = use_trust consult_proc

This function will only succeed if the term returned by consult proc is the
universal closure of the term to which call proc, and hence consult proc, is
applied.

As in the first method, the way we expect trust proc result to be most
commonly used is not directly, but through a tactic. In this situation, however,
it makes sense to apply the tactic only to calling functions that return the
(universal closure of) the term to which they are applied. This is reflected by
the type of the decision procedure calling function argument being the same as
it is for the tactic trust proc result TAC. The new tactic we get is:



use_proc_result_TAC {token = (--‘proc‘--),

dec_proc = use_trust consult_proc} : tactic

which calls use proc result on the current goal. It, too, resolves the resulting
theorem (if there is one) with the assumptions of the goal and attempts to derive
the goal as a theorem.

The inference rule given by use proc result introduces a hypothesis, much
as trust proc result does. The nature of this hypothesis is different, however,
in that it contains the theorem statement, tm, as a subterm. This causes some
difficulty with the interaction with tactics. We restricted the decision proce-
dure calling functions to ones that return closed terms because it makes the
tactic use proc result TAC operate more robustly in conjunction with other
tactics. Without this restriction, proofs built with use proc result TAC and
tactics such as GEN TAC which introduce scoped free variables would fail when
the final theorem was being built because there would be free variables in the
hypotheses introduced by use proc result TAC that would need to escape their
scope. There is a similar concern with type variables, but without the ability to
quantify propositions by type variables, we are limited in our ability to protect
against it. Whenever use proc result TAC is used on a goal where the validat-
ing theorem generated by use proc result contains type variables, a warning
message is printed.

As we have seen above, the fact that use proc result introduces a hypoth-
esis with the theorem statement causes some difficulty with tactic style theo-
rem proving. Therefore, the question arises of why we would want this version
over what the simple method gives us. There are two answers to this ques-
tion: documentation and future elimination. The hypotheses serve as documen-
tation, recording for each theorem all the results that depended on theorems
from use proc result. Moreover, since the result accepted from external pro-
cedures are carried along with the theorems they go into proving, if we were to
prove those results in HOL90, then roughly by Modus Ponens we ought to be
able to eliminate them from the hypotheses of any theorem. And in fact we can.
This is given to us by the way used token is introduced. The constant used token

is specified to satisfy

⊢ ∀tok p q. p ∧ ((used token tok p) ⇒ q) ⇒ q.

Constant specification requires us to show that there exists a value that satisfies
the given property. In this case, we can use the function λ tok p . p as our witness.
This specification gives us the desired elimination property.

We have the specification of used token, but how are we to think of it? Inten-
tionally, we would like to think of it as telling for each proposition to which it is
applied whether it was correctly verified by the associated external procedure.
Unfortunately, that doesn’t really match with the extensional view. Extension-
ally, each proposition is either equal to T or F. Therefore, if used token proc

returns T for any true proposition, then it must return T for all true proposi-
tions. Thus, probably the best intentional understanding of used token proc is



that it is the identity function. There is one other extensional possibility for
used token proc which we shall discuss in Section 4.

In this second method we saw that we can use use proc result in con-
junction with various calculators to generate theorems simplifying expressions
or perhaps solving for unknowns. It seems unnecessarily confining to require all
theorems that make use of such calculations to carry the results of the calcu-
lations with them as hypotheses, as opposed to carrying the simpler tag of the
first method. Space considerations may render such record-keeping impractical.
In which case, we would like to have the same functionality, but with the simpler
tagging. This is given to us by the property used for the constant specification
of trusted token, which we failed to give earlier. That specification is

⊢ ∀tok p q.((used token tok p) ⇒ q) ⇒ ((trusted token tok) ⇒ q).

The witness that makes this a legitimate constant specification of trusted token

is λ tok . F. This specification allows us to replace any hypothesis of the form
used token tok p by ones of the form trusted token tok. To automate this we have
the SML function used hyp to trusted hyp : term -> thm -> thm which im-
plements the derived rule of inference:

[used token tok p, a2, . . . , an] ⊢ q

[trusted token tok, a2, . . . , an] ⊢ q

3 Examples

To illustrate the usefulness of the library add dec proc, we have created two
examples of its application. As a simple example of how these pieces fit together,
we have written a trivial example “decision procedure” called clearly. Given a
term tm, clearly will return the term ∀x1 . . . xm.tm where x1 . . . xm are all the
free variables in the term. Naturally, this procedure decides nothing. It is used
only when the person proving a theorem wants to quit at some level. This can
be a useful thing to do in some cases. In addition, we have introduced a token
clearly to represent this procedure in HOL90. Given clearly we can then define
the rule

val clearly_RULE =

use_proc_result {token = (--‘clearly‘--),

dec_proc = clearly} : term -> thm

which is in essence mk thm but on closed terms instead of sequents, and the tactic

val clearly_TAC =

use_proc_result_TAC {token = (--‘clearly‘--),

dec_proc = use_trust clearly} : tactic

which solves any goal. In this form, clearly TAC can be a quite useful tactic,
allowing one to postpone the completion of certain proof obligations indefinitely,



while still retaining the ability to discharge them at any time should one happen
to actually prove them. We feel that clearly RULE and clearly TAC are general
enough and useful enough that they have been included as part of the library
add dec proc.

The second example is a modification of Peter Homeier’s Verification Con-
dition Generator for the Sunrise system [4], as included in the contrib library
vcg for HOL90. This example is included as a separate file, and depends upon
both the add dec proc library and the vcg library. The library vcg gives a
verification condition generator for a small imperative programming language,
Sunrise, with mutually recursive procedures, proving total correctness. This is
implemented two ways, one where the verification condition generator has been
implemented as conversions and tactics within HOL90, and the other where the
basic programs for checking well-formedness and for generating the verification
conditions are written in SML, with their results accepted into HOL90 by the
use of mk thm. We shall refer to the second approach as the “fast” approach and
the first as the “secure” approach. The second approach is considered unsound in
principle, but the algorithms for these two functions were verified as part of the
project, and thus in this instance it would be reasonable to assume that the sec-
ond method is roughly as secure as the method that does all the proof in HOL90.
We have rewritten the conversions FAST WFp CONV and FAST vcg CONV from the
fast version so that instead of calling mk thm, they use use proc result. We
have then added a derived rule of inference VCG SIMPLIFY that uses the conver-
sions WFp CONV and vcg CONV from the secure version to eliminate the tagged
hypotheses giving well-formedness and stating what the verification conditions
are (or rather, that they are sufficient). By modifying this work in this manner
we make it possible for proofs of program correctness to be done interactively
using the fast version, when the human user doesn’t want to wait, and then
later to clean up to totally verified proofs by doing the well-formedness and vcg
results totally automatically after the fact. While this division may not be es-
pecially useful for proofs in the Sunrise system, where the verification condition
generator has actually been verified, it does illustrate a methodology that can
be applied to similar projects where security is critical, but where there is not
the time to carry out such a system verification. While in this method the user
must still incur the cost of actually proving the well-formedness and vcg results
generated by the fast version, it is done so at minimum cost with no reproving
required, and it can be done after all interactive parts have been completed,
off-line as it were.

It is worth noting that this example also takes full advantage of the addi-
tional flexibility of use proc result over trust proc result. The conversion
FAST WFp CONV is in essence a decision procedure, and as such could have been
implemented using trust proc result had we not been interested in eliminat-
ing our dependence on its results. However, FAST vcg CONV is really a calculation
of the verification conditions, which are not known in advance. Therefore, we
need use proc result to hand back a term telling us what those conditions are.



4 Consistency with the existing system

The library add dec proc is a proper extension of HOL90; it adds two new prim-
itive inference rules trust proc result and use proc result. The question
arises: Why is this a logically sound thing to do? The rules trust proc result

and use proc result may be seen as introducing a family of axioms, all of the
form

[trusted token tok] ⊢ P
or

[used token proc tok] ⊢ P

for some constant tok and some proposition P . These may all be seen as specific
instances of the propositions

∀tok P.trusted token tok ⇒ P (1)

∀tok P.used token tok P ⇒ P. (2)

The only other axioms we have about trusted token and used token are their
specifications:

⊢ ∀tok p q. p ∧ ((trusted token tok p) ⇒ q) ⇒ q (3)

⊢ ∀tok p q.((used token tok p) ⇒ q) ⇒ ((trusted token tok) ⇒ q). (4)

The propositions (1), (2), (3) and (4) are all satisfied if trusted token is defined
to be λ tok . F and used token is defined to be λtok prop. prop, i.e., essentially
the identity function. We can make these as definitions in HOL90 without any
new extensions, and derive the propositions (1), (2), (3) and (4) as theorems.
Since any definitional extension to HOL90 is known to be conservative, to see
that the extension given in this paper is a conservative extension, it suffices to
show that any theorem of the new system is also a theorem in the system given
by the definitional extension. A rigorous proof of this is done by induction on the
height of the proof tree (given as a sequent style encoding of natural deduction
proofs) of a theorem in the new extension. The only cases of interest are the
base cases. If we make use of one of the new primitive rules of inference or one of
the axioms of constant specification in the new extension, they must be replaced
by the derived results in the definitional extension. From here all applications of
inference rules translate directly without modification.

Let us consider the possible semantics in HOL90 of trusted token and
used token. Because of their types, for each token tok, there are two possible
values for trusted token tok and four possible functions for used token tok. As in-
dicated above, it is consistent with the extended system to interpret trusted token

as λ tok . F and used token as λtok prop. prop. For each token tok for which only
true results have been returned, it is also possible to interpret trusted token tok

as the value T. As soon as a given procedure proc accepts a false result (for either
trust proc result or use proc result), from that point on the only valid in-
terpretation of trusted token proc is F. Also as indicated above, it is consistent to
interpret trusted token as λ tok . T. The other three possibilities are that it maps



everything to T, that it maps everything to F, or that it is negation. However,
because we have the axiom

⊢ ∀tok p q. p ∧ ((used token tok p) ⇒ q) ⇒ q

we must have that used token tok T = T. Thus trusted token tok could be the
identity function, or it could map both T and F to T. As long as use proc result

only returns theorems with conclusions which are true, it is also consistent to
interpret it as either of these functions. However, for each procedure proc for
which mk trusted thm has returned a theorem

[used tokenproc P ] ⊢ P

where P is provably equal to F, we must have that trusted tokenproc is the iden-
tity function. As long as our decision procedures never return false results, there
will remain multiple interpretations (two for each token) of both trusted token

and used token.

5 Future Work

The library described in the paper is largely untested. The next step is to build
a class of decision procedures in SML and hooks through SML to other indepen-
dent procedures to be used with this library and to carry out realistic examples
using them. One way in which we will create the decision procedures in sml will
be to choose an existing implementation of some decision procedure, such as a
model checker, translate HOL90 terms into the syntax accepted by that imple-
mentation, pipe the appropriate string into it, and collect the response. After
creating a few such procedures, it may become clear whether there is additional
common infrastructure that is desired.

6 Related Work

The methods described in the paper allow results from external sources to be
incorporated in HOL90 as theorems, but with tagged hypotheses. In his 1992
HOL conference paper [1], Richard Boulton presented a method of achieving
much the same effect by creating and additional datatype of lazy thm. This
was a method external to the logic and required a fair amount of duplication of
functions for theorems as functions for lazy theorems. John Harrison went on to
use this method in his work coupling HOL with computer algebra systems [3].
The advantage of Richard Boulton’s work is that it requires no change to the
logic. Our work does require a change to the logic, but is it provably consistent
and we feel is actually much more light-weight. It also provides many of the
advantages of his system; implementing John Harrison’s work should be entirely
straightforward in this new method, for example.

In a recent release of Konrad Slind’s system HOL98, the core data structure
for theorems has been changed to carry tags to support the inclusion of results



from external procedures. Once a result is obtained from an external source it
will be tagged and the tag will appear in all theorems subsequently derived from
the result. This method provides essentially the same functionality as the first
method described in this paper. And it suffers the same limitation in its inability
to eliminate tags once they have been introduced. Moreover, it carries a greater
overhead with it than our first method does, since every theorem must have a tag
field, and every step of inference must merge the tag fields of the input theorems,
even when those fields are empty. In both versions of our method, no additional
overhead is incurred for those theorems whose proofs are done entirely within
the system.

In the most recent release of Isabelle, oracles have been added. It appears
to use a mechanism quite similar to that of HOL98. We believe that the PVS
system has some mechanism, possibly similar to lazy theorems, but we have not
seen it formally described in the literature.
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